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ABSTRACT

Answering multi-hop reasoning questions requires retrieving and synthesizing information

from diverse sources. Language models (LMs) struggle to perform such reasoning consis-

tently. We propose an approach to pinpoint and rectify multi-hop reasoning failures through

targeted memory injections on LM attention heads. First, we analyze the per-layer activa-

tions of GPT-2 models in response to single- and multi-hop prompts. We then propose a

mechanism that allows users to inject relevant prompt-specific information, which we refer to

as “memories,” at critical LM locations during inference. By thus enabling the LM to incor-

porate additional relevant information during inference, we enhance the quality of multi-hop

prompt completions. We empirically show that a simple, efficient, and targeted memory

injection into a key attention layer often increases the probability of the desired next token

in multi-hop tasks, by up to 424%. We observe that small subsets of attention heads can

significantly impact the model prediction during multi-hop reasoning. To more faithfully

interpret these heads, we develop Attention Lens: an open source tool that translates the

outputs of attention heads into vocabulary tokens via learned transformations called lenses.

We demonstrate the use of lenses to reveal how a model arrives at its answer and use them

to localize sources of model failures such as in the case of biased and malicious language

generation.
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CHAPTER 1

INTRODUCTION

Despite recent widespread adoption of neural Language Models (LMs) [Vaswani et al., 2017,

Brown et al., 2020] in chat-based applications [OpenAI, 2022], the mechanisms by which

LMs acquire knowledge during training and recall knowledge to form predictions at inference

time are not well understood. This complicates the safe deployment of LMs in consumer and

scientific pipelines [Gaudin, 2023, Yun et al., 2023, Hardalov et al., 2018, Jablonka et al., 2023,

inter alia] as LM behavior can be unpredictable. For example, LMs are capable of exhibiting

harmful behaviors including displaying bias, regurgitating private information, hallucinating,

producing offensive language, and producing malicious outputs due to adversarial training

[Nadeem et al., 2020, Winograd, 2023, Zhang et al., 2023, Bender et al., 2021, Kandpal et al.,

2023b]. Mitigating these harmful behaviors is limited by our lack of understanding of how

LMs work. To ensure success and safety of LM-based applications, better interpretability

techniques must be developed to understand how models develop behaviors. In this work,

we focus on developing better interpretability techniques to understand how models recall

knowledge during inference.

We study the case of LMs attempting to perform multi-hop reasoning. Multi-hop rea-

soning is the task of answering a prompt that contains references to an entity that is never

explicitly named (see Fig. 3.1). Many modern LMs struggle to consistently perform multi-

hop reasoning [Arkoudas, 2023, Guo et al., 2023, Blair-Stanek et al., 2023]. We develop a

method to localize multi-hop reasoning failures to specific attention heads within a model,

inspect what terms an attention heads is outputting via a tool called Attention Lens, and

an efficiently enhance multi-hop reasoning abilities during inference via our technique called

“memory injections”. Our interpretability-driven techniques can be easily adapted to local-

ize additional sets of LM behavior within model weights, are computationally efficient, and

overcome the limitations of existing model behavior corrective techniques.
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Popular techniques to correct model behavior cannot guarantee improved performance

on a target task without negatively affecting the model’s performance on unrelated tasks.

This is because researchers do not have the tools to reliably pinpoint the source of model

failure within the weight space, so they attempt to apply general and broad corrective tech-

niques to entire model architectures. Examples of popular corrective techniques include

fine-tuning [Dodge et al., 2020], parameter-efficient fine-tuning [Mangrulkar et al., 2022],

human-feedback reinforcement learning [Christiano et al., 2017], retraining [Wu et al., 2020],

model editing [Wang et al., 2023b, Zhang et al., 2024], and unlearning [Bourtoule et al.,

2021]. Many of these techniques can have unintended consequences. For example, fine-

tuning can distort features learned during pre-training, induce catastrophic forgetting, and

compromise model safety [Kumar et al., 2022, Kirkpatrick et al., 2017, Kemker et al., 2018,

Qi et al., 2023]. Model editing can have unintended effects on other knowledge originally

embedded in the model’s weights [Cohen et al., 2023a]. Machine unlearning often does not

provide guarantees about what a model knows; Shi et al. [2024], Patil et al. [2023] showed

that sensitive information could still be recovered from an edited model, even if unlearning

strategies were applied to the model to remove the sensitive information. Through our work,

we argue that the effectiveness of these corrective techniques could be enhanced via a more

robust understanding of how knowledge is embedded in models’ weights. For example, a

more faithful interpretation of a model’s weight space could enable the application of model

corrective techniques to subsets of model weights rather than entire model architectures

which may alleviate some of the unintended consequences of current techniques.

Corrective techniques are also out of reach for many individuals and organizations due

to high computational costs. Model sizes are rapidly increasing [Hestness et al., 2017, Hoff-

mann et al., 2022] which means that applying any gradient-based procedure (e.g., training,

fine-tuning) to models at billion parameter scales with internet-scale datasets requires vast

amounts of computational resources. For example, the 70 billion parameter LLama2 model

2



was trained at Meta’s Research Super Cluster [Lee and Sengupta] and their internal produc-

tion clusters; Llama2 70B’s pre-training took 1, 720, 320 GPU hours on Nvidia A100-80GB

GPUs [Touvron et al., 2023]. Few organization have these types of resources to pre-train

models. After training LLama2 70B, Touvron et al. [2023] reports that “Llama 2-Chat is

the result of several months of research and iterative applications of alignment techniques,

including both instruction tuning and RLHF, requiring significant computational and anno-

tation resources.” Ultimately, this report alludes to the reality that assessing and correcting

model behavior at scale (with current tools) can be prohibitively expensive for individuals

and smaller organizations. Better interpretability techniques could alleviate some of the

computational cost in the model assessment and alignment workflows. For example, tech-

niques that allow ML practitioners to quickly diagnose sources of model failure in weight

space and apply targeted remedies to subsets of weights have lower computational resource

requirements compared to corrective techniques that must be applied iteratively to full model

architectures.

To summarize, better LM interpretability techniques could enable strides in many open

problems:

1. Limited effectiveness of current model behavior corrective techniques.

2. High computational cost of evaluating and correcting models.

To address these problems, we need to develop interpretability tools that allow us to

further localize sources of model behavior within model architectures. There is evidence that

much model behavior is localizable [Frankle and Carbin, 2018, Goldowsky-Dill et al., 2023,

Wardat et al., 2021, Maini et al., 2023]. Behavior localization will enable the application

of corrective techniques to a model in a more exact and targeted manner, thus alleviating

both high computational costs and harmful side effects associated with current corrective

techniques such as full model fine-tuning. Ultimately, better localization techniques will

3



greatly enhance model transparency and boost understanding of how and why models succeed

and fail in various scenarios.

A central challenge to our ability to localize model behavior is a lack of understanding

as to how a model arrives at its final prediction: How are humans supposed to interpret

the computations in intermediate model layers? Additionally, we have a limited arsenal of

model corrective techniques and could benefit from more tools in our tool box; especially

gradient-free methods as these would be more accessible due to lower computational cost.

In this work, we address these shortcomings by making the following contributions:

1. We develop a gradient-free method, “memory injections”, to enhance model behavior at

inference time in a human understandable format via intervening on hidden activations.

2. We show how memory injections can be used to localize model failure on multi-hop

reasoning tasks, and even correct model performance without modifying weights, thus

eliminating concerns of hurting model behavior in unrelated tasks.

3. We develop a method to interpret the outputs of attention heads in human-understandable

formats.

4. We develop a software framework, Attention Lens, to support training of probes into

individual attention heads to better characterize their role during inference.
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CHAPTER 2

RELATED WORK

We review interpretability tools such as probing, activation engineering, model editing, cir-

cuit discovery, and knowledge extraction. We also review recent advances in the study of

language model reasoning capabilities and retrieval augmented generation.

2.1 Probing Models

Probing is a class of interpretability methods that attempt the decode the contents/functions

encoded by neural network weights. Probing does this by directly mapping subsets of weight

activations into human-understandable domains. Since activations are directly related to

model inputs, probes allow researchers to causally draw connections between model inputs

and probe outputs. Therefore, researchers may be able to use probes to localize sources of

model behavior to a specific subset of model weights.

Probes can be designed flexibly to suite the task at hand and are typically optimized

using gradient based techniques like stochastic gradient descent [Ruder, 2016]. There are

two main axes of freedom in probe design:

• Architecture: Probe architectures are informed by the types of insight a researcher

requires from a probe. For example, probes can be designed at varying level’s of model

architecture (e.g. weight-level, layer-level, attention head-level). Additionally, probes

can be linear or non-linear. Certain model behaviors may be linearly decodable [Alain

and Bengio, 2016] while others may need non-linear probes to decode [White et al.,

2021]. Some works have even found that the manner in which a decoding task is defined

can allow a probe to transition from non-linear [Li et al., 2022] to linear [Nanda et al.,

2023c].
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• Training dataset: since probes are trained to perform a mapping between a model’s

activation and a desired domain, the training data a probe sees will govern its behavior.

This training data must elicit all of the behaviors the researcher is attempting to study.

There are many use cases for trained model probes. Ettinger et al. [2016] introduces using

classifier probes to understand semantic information in sentence representations. Probes can

be trained to decode a hidden model representation into vocabulary, often with the goal of

attempting to understand how each model layer informs how the model arrives at a final

token prediction [nostalgebraist, 2021, Belrose et al., 2023, Pal et al., 2023, Katz et al., 2024].

Li et al. [2022] trained probes to understand a model’s internal board representation when

predicting the next best move in the board game Othello. Kim et al. [2019] explored the

effect of pre-training on the model’s learned representations of “function words” via trained

probes. Aina and Linzen [2021] used probes to quantify model uncertainty in its completions

of ambiguous prompts.

A limitation of probes as a diagnostic tool is that it is not obvious if the probes are are

correlational or causal tools for attempting to understand a model’s internal representations

[Belinkov, 2022]. To combat this limitation, researchers can further validate the efficacy of

probes by using the probes to guide activation engineering and observe if downstream model

performance is affected as they would expect. For example, Li et al. [2022] shows that by

using probes to guide the editing of Othello-GPT’s representation of the board state, they

could alter the model’s final next move prediction as expected; this further validated that the

probes were faithfully decoding information as it was known to the model. See section 2.2

for additional techniques about how to engineer activations.

2.2 Activation Engineering

Activation Engineering is a class of interpretability method that allows researchers to

decode the functions of model components, by modifying their respective output activa-
6



tion values and observing the downstream effect. Like probing 2.1, the goal of activation

engineering can be to allow researchers to attribute model behavior back to specific model

components. Additionally, activation engineering can also be used to directly influence model

behavior at inference time.

Some examples of applications of activation engineering are:

• Vig et al. [2020] introduced “causal mediation analysis”: a method to understand which

components are a model are responsible for specific behaviors in language modeling;

they apply causal mediation analysis to investigate which components of a model are

responsible for gender bias.

• Sun et al. [2021] demonstrates that activations of neural networks can be used to

identify in-distribution and out-of-distribution model inputs in vision tasks. Djurisic

et al. [2022] builds on this concept by both pruning and modifying late layer model

activations for out-of-distribution detection.

• Meng et al. [2022a] used “causal mediation analysis” [Vig et al., 2020] as a method

for localizing knowledge within model weights by comparing the activations of model

forward passes over two different inputs.

• Turner et al. [2023] proposes a method to add vectors that encode human-understandable

semantic information directly to the activations of LMs to steer their outputs.

• Fort [2023] showed how to adversarially engineer activations to have harmful down-

stream effects on LM prompt completions.

2.3 Model Editing

Model editing aims to change specific facts, associations, or information embedded in an

LM outside of the constraints of traditional model training. Model editing requires the ability
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to localize learned information within subsets of the weight space and employs efficient and

targeted methods to change this information while mitigating its effects of other information

also embedded in the weight space. Model editing can be used to remove or alter private

information, incorrect information, outdated information, biased information, and harmful

information stored within model weights [Wu et al., 2023, Yan et al., 2024, Chen et al., 2023,

Wang et al., 2024]. Model editing can enable machine learning models to more exactly reflect

human knowledge, without the massive overhead cost of typical model pre-training/fine-

tuning. Zhu et al. [2020] proposes an approach to modify specific learned facts encoded

withing a LM’s weights, while preserving model performance on other previously learned

knowledge via a constrained optimization problem. Dai et al. [2022a] developed attribution

methods to decipher which neurons are responsible for specific facts within languages models

and developed methods to manipulate these neurons to edit a given fact. Cao et al. [2021],

Mitchell et al. [2022b] both propose hypernetwork based approaches to edit facts within

models. Hypernetworks are additional networks that are trained to predict which weights

are responsible for a given fact and how to modify the weights of a given neural network

to better represent the desired knowledge. Meng et al. [2022a] proposed Rank-One Model

Editing (ROME): by interpreting multi-layer perceptrons as key-values stores, ROME is able

to replace specific keys-value pairs to override old or establish new knowledge associations

in the model.

2.4 Circuit Discovery

Circuits are sparse subsets of neural network weights that are responsible for (sub)sets of

model behavior. Interpreting neural networks as circuits is useful as it allows researchers to

localize sources of model behavior and may even help them better understand how stochastic

training processes compress knowledge and skill into weights.

It was not always obvious that it was tractable to attribute model behavior to specific
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model components as these models are increasing massive (e.g. million, billion, trillion pa-

rameter scales). However, much research has shown that neural networks are very sparse: a

small subset of weights are often responsible for much of a model’s behaviors. For example,

Frankle and Carbin [2018] showed that neural networks contain “winning lottery tickets”:

sparse sub-networks within trained NNs that are nearly as performant as the original dense

network. Follow up work, by Amid et al. [2022] further developed methods to extract per-

formant sub-networks from randomly initialized dense NNs. Results about the sparsity of

models held across neural network architectures [Han et al., 2017, Chen et al., 2020, Behnke

and Heafield, 2020].

Further work attempted to take this work a step further by designing methods to at-

tribute more specific model behaviors to individual model components. Elhage et al. [2021]

conducted a detailed analysis of the types of circuits that appear in zero, one, and two

layer transformers. Chintam et al. [2023] identified components of transformer-based LMs

for gender bias. Nanda et al. [2023b] reverse engineers the algorithm implemented by a one

layer transformer for modular addition. While the types of behaviors exhibited by a given

model can be large and diverse, the workflow to discover circuits share many similarities.

Conmy et al. [2023] outlines a typical circuit discovery workflow for many ML interpretability

pipelines and proposes a framework automate the workflow.

2.5 Knowledge Extraction

Knowledge extraction in language modeling is the practice of discovering what infor-

mation is embedded in a LM’s weights. The practice of knowledge extraction has grown

in popularity as it became better known that LMs can be treated as successful knowledge

stores. For example, Roberts et al. [2020] showed that by fine-tuning an LM on question an-

swering tasks, the LM was able to successfully perform question-answering in a closed-book

setting. This finding implied that models were good at storing knowledge during training and
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retrieving knowledge during inference time. In the context of language modeling, knowledge

extraction is useful because it illuminates what a model knows well and what information

it might be lacking. This enables ML developers to stage the appropriate interventions to

improve model performance on desired tasks (e.g., further fine-tuning, knowledge editing). A

simple method to extract model knowledge is to prompt the model and observe the outputs.

In a closed-loop model prompting scenario the model would have to rely on its internal knowl-

edge store in order to appropriately respond to a prompt. Therefore, based on the model

outputs for any given prompt, the prompter would be able to infer what information the

model is storing in its weights. Petroni et al. [2019], Jiang et al. [2020] both design prompt-

ing strategies to elucidate what knowledge is contained in LMs. The immediate shortcoming

with prompting a model to elicit information is that models will only output information

that it deems relevant to the prompt. Therefore, vanilla prompting knowledge extraction

strategies may fail to uncover a model’s full breadth of knowledge. It is often challenging

to come up with a comprehensive prompting scheme to enable a model to exercise its entire

knowledge store. To combat this, researchers have also devised more rigorous knowledge

extraction techniques:

• Cohen et al. [2023b] proposes a strategy to extract a knowledge-graph (KG) of facts

from a LM: given a seed entity, they “crawl” the KG via prompts that are designed for

both precision and recall.

• Zhong et al. [2021] demonstrated that by training probes, rather than using discrete

prompts, to illicit knowledge from LMs, they were able to tighten the lower bound on

knowledge extraction benchmarks like LAMA [Petroni et al., 2019].

• Elazar et al. [2021] proposed a novel framework to assess if facts known to a LM are

generalizable. By using a paraphrasing technique, they show that models are often

inconsistent in reporting facts thus implying they do not contain generalizable facts.
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2.5.1 Memorization

Memorization is an undesirable phenomena observed in LMs: models can be prompted

to output their training data verbatim [Feldman and Zhang, 2020]. Eliciting memorized

data from a LM can be viewed as a subset of general purpose knowledge extraction tasks.

However, while many forms of knowledge extraction are for benign purposes, such as gauging

and improving a model’s knowledge base, memorized data extraction can have harmful

consequences. Memorized data can contain sensitive and/or private data that should not

be recoverable by a model prompter. Dataset extraction attacks aim to prompt a model in

a manner such that the model regurgitates its training data. Carlini et al. [2021] proposed

one of the first training data extraction attacks from LMs. Nasr et al. [2023] designed a

black-box model prompting scheme to extract training data from LMs. Many works have

attempted to better understand the causes of memorization. Kandpal et al. [2022] finds that

deduplicating text may result in models memorizing less training data. A recent work by

Carlini et al. [2023] finds that there are 3 main reasons for memorization: 1) larger model

scale, 2) data duplication, 3) larger input context length and attempts to quantify how much

of a model’s pre-trained data is memorized.

2.6 Language Model Reasoning

Huang and Chang [2022] defines reasoning as “a cognitive process that involves using evi-

dence, arguments, and logic to arrive at conclusions or make judgments.” Reasoning has

been studied as an aspect of human behavior in fields like psychology [Wason and Johnson-

Laird, 1972] and philosophy [Passmore, 1961]. With the recent advances in conversation-

based language modeling [Brown et al., 2020, Chowdhery et al., 2023, Chung et al., 2022,

OpenAI, 2022, inter alia], researchers have begun to investigate the possibility of reasoning

skills emerging in models. LMs have been showed to exhibit emergent behaviors, including

the ability to “reason”, as their architecture sizes increase [Wei et al., 2022a]. Reasoning is
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measured in LMs by evaluating them on end task performance. Examples reasoning task

include:

• Arithmetic reasoning: the ability to apply mathematical concepts to solve problems.

Examples of arithmetic reasoning benchmarks are GSM8k [Cobbe et al., 2021], Math

[Hendrycks et al., 2021], MathQA [Amini et al., 2019], SVAMP [Patel et al., 2021],

ASDiv [Miao et al., 2021], AQuA [Ling et al., 2017], and MAWPS [Roy and Roth,

2016].

• Common Sense reasoning: the ability to use commonly known knowledge to make

decisions in unknown situations. Examples of commonsense reasoning benchmarks are

CSQA [Talmor et al., 2018], StrategyQA [Geva et al., 2021a], and ARC [Clark et al.,

2018].

• Multi-hop reasoning: the ability to synthesize related facts for answer questions with

answers require many dependencies. Examples of multi-hop reasoning benchmarks

include 2WikiMultiHopQA [Ho et al., 2020], and HotpotQA [Yang et al., 2018].

To elicit reasoning abilities from pre-training LMs, much work demonstrated notable per-

formance gains via new prompting strategies. For example, Wei et al. [2022b] demonstrated

that using a chain-of-thought prompting paradigm greatly improved reasoning abilities in

LM. Follow up work from Wang et al. [2023c] introduced the importance of self-consistency

in chain-of-though prompting scenarios. Following these works, many works have innovated

on the “x-of-thought” prompting paradigm [Yao et al., 2023, Besta et al., 2023, Sel et al.,

2023]. As interest in eliciting reasoning abilities from LMs grew, so did interest in under-

standing how LMs conducted reasoning. Researchers have tried to explain how models seem

to “reason”. Geva et al. [2021b] finds that feed-forward layers in LMs act as knowledge stores

which can be queried by the model when certain input prompts require additional knowl-

edge. Geva et al. [2023] reverse engineers how transformers are able to recall facts. Hou et al.
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[2023] posits that models “reason” by building internal tree-like representations of multi-hop

reasoning processes.

2.7 Retrieval Augmented Generation

Retrieval Augmented Generation (RAG) is a method of supplementing LMs with ex-

ternal sources of information as they respond to prompts. Lewis et al. [2020] studied RAG

in the context of improving a LM’s question answering (QA) ability: to enhance a LM’s

QA ability, the authors trained a neural retriever model that was able to traverse a vector

database of Wikipedia articles and select the appropriate article to supply the the LM in

conjunction with its input prompt. The authors demonstrated that LM’s with RAG were

able to outperform vanilla LM’s in open domain QA tasks. In addition to enhanced QA

ability, RAG boasts many benefits. Ovadia et al. [2023] demonstrated that RAG outper-

formed conventional fine-tuning of model weights when encountering both knowledge seen

during training and new knowledge. This meant that RAG was better at introducing new

knowledge to LMs. For example, if a model was trained in year 2021 and it is desirable for

this model to be able to answer questions about news events in 2022, it would be beneficial

to use RAG (rather than vanilla fine-tuning) to introduce 2022 news articles to the model to

enable it to answer questions about it. A recent survey by Gao et al. [2023] reported that:

• RAG improved model interpretability, as model responses can be attributed to specific

data sources.

• RAG models inherently may have a greater breadth of knowledge, due to the external

knowledge database being vast. Vanilla LMs are constrained by the fact that all of

their knowledge must be able to be compressed into their weight space during training.

• Model inference using RAG would increase latency (due to the retrieval step) and thus

may be constrained by computational resources. However, RAG does not have the
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same fine-tuning computational costs that vanilla LM’s do, therefore it is beneficial to

do a case-by-case analysis when considering cost of RAG.

In addition to QA, many works have explored unique applications for RAG in language

modeling. Liu et al. [2020] demonstrated the use of RAG in the context of code summa-

rization. Chen et al. [2022] developed a pipeline to augment a text-to-image model with a

multi-modal database (image, text) pairs to enhance image generation capabilities. Komeili

et al. [2021] augmented dialogue based LM with the ability to do internet search queries and

showed superior dialogue performance.

RAG is a promising technology with which to augment language modeling abilities, and

many opportunities for innovation exist: How do we retrieve the most useful information?

How do we best encode this information before supplying it to an LM?
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CHAPTER 3

MEMORY INJECTIONS

3.1 Introduction

Transformer-based Large Language Models (LMs) [Vaswani et al., 2017, Brown et al., 2020]

have shown exceptional promise for basic knowledge retrieval and language generation; how-

ever, they often lack the ability to perform basic reasoning tasks [Arkoudas, 2023, Guo

et al., 2023, Blair-Stanek et al., 2023]. In this work, we focus on the simple task of answering

multi-hop prompts (i.e., prompts in which the subject is not stated explicitly), which humans

handle easily but with which LMs often struggle (see Fig. 3.1).

Researchers have attempted to rectify multi-hop reasoning failures by using various

prompting methods such as Chain-of-Thought (CoT), Tree-of-Thought (ToT), and Graph-

of-Thought (GoT) reasoning [Wei et al., 2022b, Wang et al., 2023c, Long, 2023, Xie et al.,

2023b, Yao et al., 2023, Besta et al., 2023]. However, these approaches often put the burden

on users to know how to elicit desired responses—and, in the hands of non-expert users, can

lead to unreliable prompt completions. Researchers have also proposed model editing [Meng

et al., 2022a,b, Zhong et al., 2023, Li et al., 2023] approaches that may hard-code distant

relationships directly into model weights, rather than enhancing the model’s abilities to re-

call and then link simpler relationships. These approaches can be computationally expensive

and have unintended effects on other knowledge originally embedded in the model’s weights

[Cohen et al., 2023a].

Our approach to this problem is based on the hypothesis that LMs often fail to recall

relevant memories when attempting to answer a prompt that requires multiple “hops” of

reasoning, rather than lacking knowledge of the memories altogether. For example, when

attempting to complete the multi-hop prompt, “The largest coral reef system in the world is

located off the coast of. . . ,” we hypothesize that the model does not correctly recall that “the
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The largest coral reef
in the world is located

off the coast of
the PhilippinesLLM

(a) Multi-hop prompt.

The Great Barrier
Reef is located off

the coast of
Australia

The name of the
largest coral reef

is

the Great Barrier
Reef

LLM

LLM

(b) Multi-hop prompt broken into 2 single-hop prompts.

Figure 3.1: A multi-hop prompt vs. two analogous single-hop prompts. The outputs are
from GPT2-Small.

largest coral reef system in the world” is “the Great Barrier Reef” before predicting the next

token in the sequence. Yet the model can accurately complete both the corresponding single-

hop prompt “The Great Barrier Reef is located of the coast of. . . ,” and, when prompted,

“the largest coral reef” as “the Great Barrier Reef.” Clearly, this information was encoded in

the model during training but is not incorporated when answering questions that reference

the prompt’s subject indirectly. In this case, therefore, we define the missing memory to be

“the Great Barrier Reef.”

To study our hypothesis, we first attempt to reverse engineer a key mechanism by which

transformer-based LMs conduct reasoning. Specifically, we find that in transformer-based
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models it is attention heads, rather than multi-layer perceptrons, that are responsible for

retrieving memories critical to successful model predictions; our finding is further substan-

tiated by similar findings by Li et al. [2023], Geva et al. [2023], Dar et al. [2022]. We then

study instances in which this mechanism fails in multi-hop reasoning tasks and find that

this mechanism is likely the source of incorrect, insufficient, or irrelevant memory retrievals

(Contribution 1)—for an example, see Fig. 3.2.

We then propose a lightweight memory injection method that can be employed to cor-

rect a multi-hop reasoning failure during inference (Contribution 2). As an example: by

employing our method to inject the memory of “The Great Barrier Reef” into the multi-hop

prompt “The largest coral reef system in the world is located off the coast of. . . ” during

inference, we increase the probability of the next token “Australia” by 189%; refer to Fig. 3.3

for details.

For our analyses, we hand-crafted a dataset for interpretabilty purposes (Contribution

3) and make use of a larger programmatically-generated dataset—refer Table 3.1 for more

information.

Finally we conduct additional experiments (Contribution 4) to:

1. Identify the ideal layer and magnitude for the memory injection.

2. Demonstrate the significance of curating prompt-specific memories for injection.

3. Analyze if memories drawn from different parts of speech—namely, nouns, adjectives,

adverbs, conjunctions, verbs—behave differently during memory injection.

3.2 Background & Notation

We define single- vs. multi-hop prompts and provide a formal definition of the transformer

model.
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3.2.1 Multi-hop vs. single-hop prompts

We refer to a prompt as single-hop if the subject of the relation is stated explicitly in the

prompt, and multi-hop otherwise. Multi-hop prompts refer to their subject in a way that

requires an additional “hop” or inference step. For example, consider the single-hop prompt,

“George Washington fought in the. . . ” with a correct answer being “Revolutionary War.” In

the analogous multi-hop prompt, “The first president of the United States fought in the. . . ,”

a preliminary inference step is needed to identity of the first US president before predicting

the next token. For additional examples of single- and mutli-hop prompts, see Table 3.2 in

the appendix.

3.2.2 Transformer Architecture

We introduce a common notation for the components of the transformer-based language

model architectures that are the focus of our analyses. Specifically, we focus on auto-

regressive, decoder-only models. We adopt much of our notation from Elhage et al. [2021]

and Geva et al. [2023].

Embedding Inputs

An input text is parsed into N distinct tokens t0, · · · , tN . Each token ti is then embedded

as x0i ∈ Rd via an embedding matrix WE ∈ R|V |×d, where V is the vocabulary and d is the

hidden dimension.

Residual Stream

Following the embedding layer, all tokenized embeddings x0i are passed through a series of

residual blocks. The outputs of each residual block are added back into the model’s residual

stream denoted by Rℓ (∀ℓ ∈ {1, · · · , L}) where L is the number of layers in the LM.
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We define the residual stream at layer ℓ as:

Rℓ = [xℓ0, · · · , x
ℓ
N ], (3.1)

where xℓi is the representation of token i at layer ℓ. The residual stream is updated by its

respective residual block rℓ:

Rℓ+1 = Rℓ + rℓ+1, (3.2)

and the output of a residual block rℓ is:

rℓ = aℓ +mℓ, (3.3)

where aℓ is the output of the Multi-Headed Self Attention (MHSA) layer and mℓ is the output

of the Multi-Layer Perceptron (MLP). We define MHSA and MLP in the following sections.

Multi-Headed Self Attention (MHSA)

Each MHSA layer ℓ is defined via four parameter matrices W ℓ
Q,W

ℓ
K ,W ℓ

V ,W
ℓ
O ∈ Rd×d (∀ℓ ∈

{1, · · · , L}) and the hyperparameter H denotes the number of attention heads. Following

Elhage et al. [2021] and Geva et al. [2023], we can further dissect our parameter matrices to

better observe the relationship between unique sets of parameters and individual attention

heads: W
l,j
Q ,W

ℓ,j
K ,W

ℓ,j
V ∈ Rd× d

H and W
ℓ,j
O ∈ R

d
H×d for j ∈ [1, H]. Now, we can define the

output of each MHSA aℓ as the sum of all attention head outputs,

aℓ =
H∑
j=1

hℓ,j , (3.4)

where hℓ,j is the output of the jth head in layer ℓ:
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hℓ,j = Aℓ,j(Rℓ−1W
ℓ,j
V

)
W

ℓ,j
O . (3.5)

Aℓ,j = softmax

((
Rℓ−1W ℓ,j

Q

)(
Rℓ−1W ℓ,j

K

)T√
d/H

⊙M

)
(3.6)

where the softmax(·) is performed as a row-wise operation, ⊙ is the Hadamard product, and

M ∈ {0, 1}N×N is an auto-regressive attention mask where masked token positions are set

to 0.

Multi-Layer Perceptron (MLP)

Each MLP is defined via two parameter matrices W ℓ
F ,W

ℓ
I ∈ Rd×dp with inner-dimension dp

and a nonlinear activation function, σ.

mℓ = W ℓ
F σ
(
W ℓ

I

(
aℓ +Rℓ−1)) (3.7)

Unembedding Predictions into Logits

After the final residual block, all token positions x−1
i will be projected back into the vo-

cabulary domain via the unembedding matrix WU ∈ Rd×|V |. The output of the last token

position is the next token prediction of the model.

3.3 Experimental Overview

Our central aim is to better understand how the outputs of the attention heads affect model

performance with respect to predicting the correct next token in prompts requiring single-hop

reasoning versus in prompts requiring multi-hop reasoning.
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3.3.1 Dataset Descriptions

We employ three datasets in this work. Two, used to assess model prompt completion

accuracy, are our own high-quality manually curated dataset of single and multi-hop pairs

and a programmatically generated dataset of prompt pairs. The third comprises lists of

words from common parts of speech, which we use to study how the effectiveness of our

intervention varies with the part of speech of injected tokens.

Programmatically Generated Dataset

The 2WikiMultiHop dataset [Ho et al., 2020] contains pairs of knowledge triples

{(s1, r1, s2)1, (s2, r2, s3)2}, each with two subjects s and a relationship r. We used these

knowledge triples, plus a set of predefined templates, to generate a set of pairs of single- and

multiple-hop questions, 2WMH : see Tables 3.1 and 3.2.

For example, let s1 = “Lilli’s Marriage,” r1 =“director,” s2 = “Jaap Speyer,” r2 = “country

of citizenship,” s3 = “Dutch.” Then for single-hop, the template: “The r2 of s2 is . . . s3”,

the prompt yields the prompt “The country of citizenship of Jaap Speyer is . . . [Dutch]”; for

multi-hop, the template “The r2 of the r1 of s1 is . . . s3” yields then the prompt: “The

country of citizenship of the director of Lilli’s Marriage is . . . [Dutch].”

Human-Generated Dataset

As evidenced by the example presented above, the 2WMH dataset, while scalable, contains

many grammatical flaws. Therefore, we construct an additional dataset for multi-hop reason-

ing with a focus on grammatical and factual correctness presented below. We hand-crafted

106 (single-hop, multiple-hop) prompt pairs, each in the same form as those in 2WMH : e.g.,

single-hop: “St. Peter’s Basilica is in the city of. . . [Rome]” and multi-hop: “The biggest

church in the world is in the city of. . . [Rome]”. Each prompt pair was also evaluated by two

external reviewers for factual and grammatical accuracy. We hereafter refer to this dataset
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as Hand ; see Tables 3.1 and 3.2.

Single-hop Multi-hop

Data Size Model Answer prob. Surprisal Prompt len. Answer prob. Surprisal Prompt len.

Hand 106 GPT2-Small 0.157 4.21 9.66 0.087 4.91 12.99
Hand 106 GPT2-Large 0.28 2.90 9.66 0.157 3.97 12.99

2WMH 1000 GPT2-Small 0.0007 9.80 10.44 0.00086 9.64 14.00
2WMH 1000 GPT2-Large 0.0023 8.71 10.44 0.002 8.57 14.00

Table 3.1: Properties of the datasets used in our work. Size: Number of prompts. Answer
prob.: Average model probability model for expected next token. Surprisal : Average model
surprisal value for expected next token (surprisal ≜ − log(p) where p is a probability).
Prompt len.: Average tokenized length of prompt.

Dataset Single-Hop Prompt Multi-Hop Prompt

Hand

George Washington fought in the
. . . [Revolutionary War]

The first president of the United States
fought in the . . . [Revolutionary War]

Burj Khalifa is located in the city of
. . . [Dubai]

The tallest building in the world is located in
the city of . . . [Dubai]

Nelson Mandela brought an end to
. . . [Apartheid]

The first president of South Africa brought
an end to . . . [Apartheid]

John F Kennedy was assassinated by a
person named . . . [Lee Harvey Oswald]

The 35th president of the United States was
assassinated by a person named . . . [Lee Har-
vey Oswald]

The father of Hermes is . . . [Zeus] The father of the Greek messenger god is
. . . [Zeus]

2WMH

The place of birth of Dušan Hanák is
. . . [Bratislava]

The place of birth of the director of I Love,
You Love is . . . [Bratislava]

The employer of Éric Rohmer is
. . . [Cahiers du cinéma]

The employer of the director of Triple Agent
is . . . [Cahiers du cinéma]

The employer of Chip Gubera is
. . . [University of Missouri]

The employer of the director of Academy of
Doom is . . . [University of Missouri]

Steve Vai received the . . . [Grammy] The performer of The Attitude Song received
the . . . [Grammy]

The place of death of Augustus II the
Strong is . . . [Warsaw]

The place of death of the spouse of Chris-
tiane Eberhardine of Brandenburg-Bayreuth
is . . . [Warsaw]

Table 3.2: Example prompts. Single/multi-hop prompt pairs from Hand and 2WMH
datasets.

22



Part of Speech Dataset

We used a subset of the Corpus of Contemporary American English [Davies, 2011] which

compiles word frequencies [Davies, 2010] to generate lists of (i) the most common words from

various parts of speech: 824 adjectives, 331 adverbs, 40 conjunctions, 2635 nouns, 969 verbs,

and (ii) the 5050 most common words overall (“top 5050”).

3.3.2 Model Description

We work with two pretrained GPT2 models [?]. GPT2-Small has 12 layers, 12 attention

heads per attention layer, and ∼160M parameters. GPT2-Large has 36 layers, 20 attention

heads per attention layer, and ∼840M parameters. Both have a vocabulary of ∼50K tokens.

3.3.3 Tools & System Setup

We use the Transformer Lens Python package [Nanda and Bloom, 2022] to cache, inspect,

and construct interventions on model inference passes. We ran experiments on a single

A100 GPU with 40 GB RAM. Experimental code, dependency information, and datasets

are available on GitHub.1

3.4 Proposed Methods

Recent work suggests that attention heads are knowledge retrievers during a model’s infer-

ence pass [Geva et al., 2023, Li et al., 2023]. Extending this result to multi-hop prompts, we

hypothesize that attention layers play an important role in retrieving memories relevant to

the “hop” in a given prompt. Therefore we define two algorithms below: one for analyzing

attention head outputs in embedding space and the other for injecting a targeted memory

into a model’s hidden activations in order to correct faulty/incomplete reasoning.

1. https://github.com/msakarvadia/memory_injections
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3.4.1 Interpreting Attention Heads

We want to further understand the outputs of individual heads, and more specifically assess if

any individual attention heads are exercised differently by single-hop vs. multi-hop prompts.

Inspired by Logit Lens [nostalgebraist, 2021], we leverage the model’s unembedding ma-

trix to study the internal mechanism of each attention head. For attention head j in layer ℓ,

hℓ,j , we apply the model’s unembedding matrix WU followed by a softmax(·) operation and

interpret the last token position (out of N total tokens) as a set of probabilities over tokens

in the vocabulary space:

vocabℓ,j = softmax(hℓ,jWU )N−1 (3.8)

See in Fig. 3.2 an example of discrepancy in attention head behavior, when using Eq. (3.8),

for analogous single vs. multi-hop prompts. See additional examples in Table 3.3.

A potential limitation of this approach is that it may portray attention head behavior

inaccurately due to representational drift between model layers—and, like [nostalgebraist,

2021], may not generalize to other models. Nevertheless, we find it to be an effective prelim-

inary tool for studying the function of attention heads in updating the output distribution.

We leave the development of an interpretability tool that considers these drawbacks to future

work.
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Figure 3.2: Diagram of language model reasoning. Highest ranked attention outputs of
GPT2-Small at layer ℓ = 9, head h = 8 when projected into vocabulary space (via the GPT2-
Small embedding matrix) for a single-hop prompt (green) and its multi-hop counterpart
(red).

3.4.2 Memory Injections to Correct Failures

Fig. 3.2 shows how Eq. (3.8) can reveal discrepancies between attention head behaviors for

single- vs. multi-hop prompts. We hypothesize that such discrepancies arise because the
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Prompt
Type

Prompt Layer ℓ Head h Output

Single-Hop

John F Kennedy was as-
sassinated by a person
named . . .

10 0 [‘ Kennedy’, ‘ JFK’, ‘ Assass’, ‘ assass’, ‘Kenn’, ‘ assassi-
nation’, ‘ Cuba’, ‘ Oswald’, ‘ assassin’, ‘ Cuban’, ‘ Fidel’,
‘ Bobby’, ‘ Havana’, ‘ assassinated’, ‘ assassins’, ‘ Jackie’,
‘ Castro’, ‘ Jinn’, ‘ assassinate’, ‘Mu’, ‘ 1963’, ‘ Kahn’, ‘
drone’, ‘ Cah’, ‘ Mu’, ‘ Ghosts’, ‘ Soul’, ‘ Laos’, ‘ Ceme-
tery’, ‘ CIA’]

Barack Obama was a
member of the . . .

9 8 [‘ Obama’, ‘Obama’, ‘ Maryland’, ‘ America’, ‘ JFK’, ‘
Biden’, ‘ Harlem’, ‘ Washington’, ‘ American’, ‘ Clin-
ton’, ‘ White’, ‘ Americans’, ‘ Congressional’, ‘ Harvard’,
‘ Kennedy’, ‘ FBI’, ‘ Federal’, ‘ CDC’, ‘ DOJ’, ‘ Presi-
dent’, ‘ Georgetown’, ‘ HHS’, ‘ Barack’, ‘ US’, ‘ Trayvon’,
‘ Connecticut’, ‘ Holder’, ‘ New’, ‘ BLM’, ‘ Baltimore’]

Cain murdered a person
named . . .

2 1 [‘ police’, ‘,’, ‘ the’, ‘ a’, ‘\n’, ‘ and’, ‘ violence’, ‘.’, ‘
death’, ‘ in’, ‘ criminal’, ‘ of’, ‘ to’, ‘ victim’, ‘ "’, ‘-’, ‘
at’, ‘ victims’, ‘ crime’, ‘ from’, ‘ an’, ‘ that’, ‘ murder’, ‘
crimes’, ‘ is’, ‘ was’, ‘ he’, ‘ for’, ‘ (’, ‘ killed’]

Russia is mostly located
on the continent of . . .

9 8 [‘ Moscow’, ‘ Russian’, ‘Moscow’, ‘ Russia’, ‘ Kremlin’, ‘
Putin’, ‘Putin’, ‘Russia’, ‘ Russians’, ‘Russian’, ‘♦?’, ‘ ♦?’,
‘ Dmitry’, ‘ Mikhail’, ‘ Vladimir’, ‘ Sergei’, ‘ Siberia’, ‘
Soviet’, ‘ Siberian’, ‘ Ukraine’, ‘ Ukrainian’, ‘ Sochi’, ‘
Caucasus’, ‘ Nikol’, ‘Soviet’, ‘ KGB’, ‘ Dmit’, ‘ USSR’,
‘Ukraine’, ‘ Ukrainians’]

George Washington
fought in the . . .

9 8 [‘ Washington’, ‘Washington’, ‘ Virginia’, ‘Virginia’, ‘
Maryland’, ‘ Congressional’, ‘ Georgetown’, ‘ Dull’, ‘
Smithsonian’, ‘ Maine’, ‘ Burr’, ‘ Jefferson’, ‘ Navy’, ‘
Capitol’, ‘ congressional’, ‘ FDR’, ‘ Lexington’, ‘ Byrd’,
‘ Rhode’, ‘ Roosevelt’, ‘ Pike’, ‘ Everett’, ‘ Brookings’,
‘ Madison’, ‘apeake’, ‘ Randolph’, ‘ VA’, ‘ Arlington’, ‘
Americans’, ‘ Lafayette’]

Multi-Hop

The 35th president of the
United States was as-
sassinated by a person
named . . .

10 0 [‘ assass’, ‘ Assass’, ‘ assassination’, ‘ assassin’, ‘ assas-
sins’, ‘ assassinate’, ‘ Malik’, ‘ bullets’, ‘ gunmen’, ‘ assas-
sinated’, ‘Mu’, ‘ Pakistani’, ‘ sniper’, ‘ killings’, ‘ JFK’, ‘
Pakistan’, ‘ homicides’, ‘ Alger’, ‘ lethal’, ‘ Islamabad’, ‘
Karachi’, ‘ shooting’, ‘ gun’, ‘ gunshot’, ‘ Mu’, ‘ murder’,
‘ killing’, ‘ pistols’, ‘ murders’, ‘ gunned’]

The first black president
of the United States was
a member of the . . .

9 8 [‘ Negro’, ‘ NAACP’, ‘ blacks’, ‘ black’, ‘ Baltimore’, ‘
White’, ‘ negro’, ‘ Washington’, ‘ BLM’, ‘ white’, ‘ FBI’,
‘ America’, ‘ Maryland’, ‘ African’, ‘ Trump’, ‘ Nixon’,
‘ Charleston’, ‘ Americ’, ‘ KKK’, ‘Washington’, ‘ Vir-
ginia’, ‘ racial’, ‘ Blacks’, ‘white’, ‘White’, ‘ nig’, ‘ Black’,
‘ Obama’, ‘ Louisiana’, ‘ whites’]

Adam and Eve’s eldest
son murdered a person
named . . .

2 1 [‘,’, ‘ the’, ‘ and’, ‘ a’, ‘ "’, ‘ in’, ‘\n’, ‘.’, ‘ to’, ‘ of’, ‘ at’, ‘
is’, ‘ he’, ‘-’, ‘ that’, ‘ was’, ‘ for’, ‘ police’, ‘ from’, ‘ on’,
" ‘", ‘ as’, ‘ death’, ‘ had’, "’", ‘ an’, ‘ his’, "’s", ‘ said’, ‘
told’]

The largest country in
the world is mostly lo-
cated on the continent of
. . .

9 8 [‘,’, ‘\n’, ‘ the’, ‘ and’, ‘.’, ‘ in’, ‘ a’, ‘ to’, ‘ of’, ‘ (’, ‘-’, ‘
for’, ‘ that’, ‘ "’, ‘:’, ‘ is’, ‘ or’, ‘ at’, ‘ as’, ‘ I’, ‘ on’, ‘ with’,
‘ it’, ‘ an’, ‘ from’, ‘ all’, ‘ by’, ‘ not’, "’s", ‘ more’]

The first president of the
United States fought in
the . . .

9 8 [‘ Trump’, ‘ Washington’, ‘ America’, ‘Washington’, ‘
American’, ‘Trump’, ‘America’, ‘ Obama’, ‘ Donald’, ‘
FBI’, ‘ Congressional’, ‘ Americans’, ‘American’, ‘ Nixon’,
‘ Congress’, ‘ congressional’, ‘ White’, ‘ Roosevelt’, ‘ Re-
publican’, ‘ Negro’, ‘ Clinton’, ‘ JFK’, ‘ Reagan’, ‘ Vir-
ginia’, ‘ FDR’, ‘Obama’, ‘Americans’, ‘ Americ’, ‘FBI’,
‘Congress’]

Table 3.3: Example of attention head outputs from GPT2-Small for Hand .
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model, when updating the output distribution in each layer, fails to incorporate information

about the implicit entity in the multi-hop prompt. This seems reasonable, as to retrieve

information about an implicit entity one likely must first relate that entity to some explicit

subject and then retrieve relevant information (hence our notion that processing prompts

with implicit subjects requires an extra hop compared to those with explicit subjects).

Thus we design a method (see Fig. 3.3) for injecting a missing hop directly into the output

hidden states of an attention head before those outputs are added back into the transformer’s

residual stream:

1. Let m be a memory (a phrase, for example: “The Great Barrier Reef”) and let τ be

the magnitude of the memory injection.

2. Tokenize the memory m into t0, · · · , tq where q is the number of tokens. We encode

each token ti into a one-hot vector bi ∈ {0, 1}|V | and sum all resulting one-hot vectors

bi together into a binary vector B ≜
∑

i bi.

3. Embed the binary vector, B, back into the model’s latent space by applying the trans-

pose of the unembedding matrix:

B∗ = BWT
U (3.9)

4. Then, to inject a memory at the attention layer of layer ℓ, add the embedded memory

into the outputs of the attention heads during the inference pass:

aℓ =
H∑
j=1

hℓ,j + τB∗ (3.10)

See additional examples of memory injections in Table 3.4.
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logits
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MLP

"The largest coral reef system in
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" coral"
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"Fiji"
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Layer 9

A
ttention O

utputs

residual stream

"The Great Barrier Reef"
(memory)

unembed ( )

embed ( )
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Next Token Pred. Prob. for " Australia"

Pre-Injection: 0.047

Post-Injection: 0.136 (189% increase)

Figure 3.3: Memory injection. Injecting memory “The Great Barrier Reef” into GPT2-
Small hidden activations at layer ℓ = 9, head 8, τ = 4.

3.5 Results and Discussion

We report, in turn, on our curated memory, random memory, and part-of-speech injection

experiments.
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3.5.1 Curated Memory Injections
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Figure 3.4: Curated memory injections. From left to right: GPT2-Small + Hand , GPT2-
Large + Hand , GPT2-Small + 2WMH , GPT2-Large + 2WMH . Each cell in each heatmap is
the average percent difference between the pre- and post-injection next token predictions for
multi-hop prompts. Green cells denote a positive percent difference (i.e., correct prediction
is more likely), while red cells denote a negative percent difference (i.e., correct prediction is
less likely). When computing the averages for each (ℓ, τ) pair we exclude outliers not within
±2 standard deviations from the mean.

We hypothesize that a model’s poor performance on multi-hop prompts is due to its inability

to resolve the implicit subject (e.g., “The largest coral reef system in the world”) to an explicit

subject (e.g., “The Great Barrier Reef”). This failure limits the later layers’ ability to retrieve

relevant information about this subject before predicting the next token. Therefore, in this

experiment, we curate sets of tokens to inject into our model’s residual stream such that it

can resolve the explicit subject more easily. We further study the effect that the injection

magnitude τ has on its success.

Experimental design: For every multi-hop prompt in our datasets, we extract the

explicitly stated subject from the corresponding single-hop prompt and inject those tokens

as memories into each attention layer as described in Section 3.4.2. For example, given the

single-hop prompt “The Great Barrier Reef is located off the coast of. . . ” and the multi-

hop prompt “The largest coral reef system in the world is located off the coast of. . . ,” the

memory is “The Great Barrier Reef.”
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Multiple-Hop Prompt Memory Answer Pre-
injection
Answer
Prob.

Post-
injection
Answer
Prob.

The God of Thunder is the son of . . . Thor Odin 0.84% 3.37%

The first president to be assassi-
nated succeeded in abolishing . . .

Abraham Lin-
coln

slavery 30.46% 63.09%

The founder of Microsoft was born
in the city of . . .

Bill Gates Seattle 1.55% 2.44%

The highest peak in the world is
located in the . . .

Mount Everest Himalayan 3.40% 22.58%

Table 3.4: Examples of memory injections. Injecting memories with τ = 4, ℓ = 9 into
GPT2-Small.

We assess the effects of injection layer ℓ and magnitude τ ∈ [1, · · · , 15] by enumerating

the resulting change in accuracy for all combinations of these two parameters for both GPT2-

Small and GPT2-Large. We measure the success of a memory injection by calculating the

percent increase between the model’s predicted probability for the expected next token from

the multi-hop prompt with and without the injection. A greater positive difference indicates

a more successful injection.

Discussion:

Results are in Fig. 3.4. We observe that each model/dataset combination has an optimal

layer ℓ and magnitude τ for memory injections: the darkest green areas, which signify the

highest average percent increase in probability of the expected next token for the respective

dataset. The best (ℓ, τ) pair injection results are in Table 3.5. Additional examples of

memory injections are in Table 3.4.

3.5.2 Random Memory Injections

In Section 3.5.1, we identify ideal (ℓ, τ) pairs for each model and dataset for a curated

memory injection. We now demonstrate that the results we observe are not spurious: i.e.,
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Curated Random

Model Data ℓ τ Subject Adj. Adv. Conj. Noun Verb Top-5050

GPT2 Small Hand 7 3 45% -7.6% -6.0% -6.3% -6.5% -7.5% -6.0%
GPT2 Small 2wmh 6 5 424% -17.1% -15.1% -10.3% -1.1% -1.2% 1.6%
GPT2 Large Hand 14 10 68% -8.1% -4.4% -4.9% -9.8% -6.0% -4.7%
GPT2 Large 2wmh 8 9 204% 13.0% 11.6% 3.5% 11.8% 4.3% 17.6%

Table 3.5: Curated vs. random memory injections. Table shows the (ℓ, τ) pairs for
the best token injections, along with the average percent difference (excluding outliers >±2
standard deviations from the mean) between pre- and post-injection expected next token
predictions for multi-hop prompts. Each random injection column indicates 40 random
injections from [Adjectives, Adverbs, Conjunctions, Nouns, Verbs, Top 5050] at the ideal (ℓ,
τ).

the information that we inject at each head should be related to the explicit subject. We

demonstrate the need for our particular injection routine by assessing the effects on model

accuracy of randomly injecting tokens from various parts of speech.

Experimental design: We conduct targeted injections for the high-scoring (ℓ, τ) pairs

identified via the experiment in Section 3.5.1, Table 3.5. Instead of injecting curated sub-

ject tokens, we select as candidate injections the 40 most common words from each of the

adjectives, adverbs, conjunctions, nouns, verbs, and top 5050 subsets of our Part of Speech

dataset. We then apply each word as an individual injection for every prompt in our multi-

hop dataset at the ideal (ℓ, τ) pair. We term these injections “random,” as they were not

curated to be relevant to our prompts.

Discussion: The results are in the right half of Table 3.5. We observe that a random

injection led, on average, to a degradation in predictive performance across most parts of

speech considered, as indicated by a negative percent difference (decrease in correct answer

probability) between the pre- and post-injection expected next token probabilities for multi-

hop prompt completions. Additionally, no random injection result exceeded the performance

of a curated injection. These findings suggest that the choice of injected tokens is critical

for improving multi-hop prompt completion success.
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3.5.3 Memory Injections for Parts of Speech
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Figure 3.5: Part of speech memory injections. This figure shows the average effect of
memory injections from various parts of speech as a function of layer ℓ (top row) and magni-
tude τ (bottom row). The standard deviation scaled by 10% is pictured across magnitudes
(top row) and layers (bottom row).

We have tested curated vs. random memory injections at ideal (ℓ, τ) pairs. Now we assess

whether memory injections from specific parts of speech more broadly have positive impacts

on prompt completions, not just at the ideal locations for curated memories, but also at

other (ℓ, τ) pairs. Our hypothesis is that if a transformer-based LM has learned a division of

labor regarding which attention layers are responsible for retrieving specific concepts (e.g.,

parts of speech) then this experiment might highlight those learned roles.

Experimental design: This experiment is identical to that of Section 3.5.1, except

that: (i) for each part of speech pos ∈ [adjectives, adverbs, conjunctions, nouns, verbs, top

5050], we use a randomly selected word: e.g., “apple” from “nouns”; and (ii) when searching
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for the ideal (ℓ, τ) pair for a given part of speech and multi-hop prompt, we use a new

random word for each injection.

Discussion: The results are in Fig. 3.5. We note that for no part of speech consid-

ered here does the average performance of the studied memory injections exceed that of the

curated memory injections presented in Table 3.5. Additionally, memory injections from

adjectives, adverbs, nouns, verbs, and top 5050 seemed to exhibit similar behavior. Memory

injections from conjunctions, however, typically outperformed all other parts of speech. We

hypothesize that this is because conjunctions often play a neutral role in prompt comple-

tions. Thus, while a random noun (e.g., “apple”) might distort prompt completion, a random

conjunction (e.g., “and,” “for”) is less likely to do so.

We note also that for each part of speech, performance averaged over all injections for

most (ℓ, τ) pairs was reduced (< 0) for Hand (refer Fig. 3.5: subplots c, d, g, h), but was

sometimes improved (> 0) for 2WMH (refer Fig. 3.5: subplots a, b, e, f). We attribute this

result to the relative difficulties of the two datasets. Hand has, on average, lower surprisals

than does 2WMH , as seen in Table 3.1, suggesting that there is additional information that

the model could use successfully for 2WMH , but not for Hand .

These results (Figs 3.6–3.9) suggest that while curated memories are ideal for correcting

multi-hop reasoning failures, language models can also benefit from injections of different

parts of speech. This result suggests that different parts of a language model (namely, early

layers) serve specialized roles, with some dealing with processing related to specific parts of

speech.

In future work we will curate relevant memories from various parts of speech for each

prompt, to better understand the effects of curated memories.
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Figure 3.6: GPT2-Large, 2WMH dataset. Heatmap shows average percent difference
between pre- and post-injection answer probabilities for multi-hop prompts excluding outliers
not within ±2 standard deviations from the mean across various parts of speech.
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Figure 3.7: GPT2-Large, Hand dataset. Heatmap shows average percent difference
between pre- and post-injection answer probabilities for multi-hop prompts excluding outliers
not within ±2 standard deviations from the mean across various parts of speech.
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Figure 3.8: GPT2-Small, 2WMH dataset. Heatmap shows average percent difference
between pre- and post-injection answer probabilities for multi-hop prompts excluding outliers
not within ±2 standard deviations from the mean across various parts of speech.
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Figure 3.9: GPT2-Small, Hand dataset. Heatmap shows average percent difference
between pre- and post-injection answer probabilities for multi-hop prompts excluding outliers
not within ±2 standard deviations from the mean across various parts of speech.
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3.6 Additional Memory Encoding Styles

We investigate additional memory encoding styles and assess the performance versus com-

putational cost trade-off between them.

3.6.1 Memory Encoding Styles

Until now, we have only investigated one type of memory encoding style (3.9) which we

will refer to as Unembed as it makes use of the model’s unembeding matrix WU . Now, we

introduce two additional encoding styles: Embed , and Layer-wise.

Embed is mathematically equivalent to Unembed aside from the fact that we use the

model’s embedding matrix WE , instead of unembedding matrix WU to encode the memory.

To do an Embed encoding, once we have the binary vector of the memory, B, we embed it

back into the model’s latent space by applying the embedding matrix:

B∗ = BWE (3.11)

Layer-wise memory encoding requires the memory to be run through the first ℓ layers

of the model, where ℓ is the layer in which the memory will ultimately be injected into during

inference. The steps for this type of memory encoding are as follows:

1. Let m be a memory (a phrase, for example: “The Great Barrier Reef”). Tokenize the

memory and apply the model’s embedding matrix to it as per 3.2.2.

2. Following the embedding layer, all tokenized embeddings x0i , of the memory, are passed

through the first ℓ residual blocks of the model as per 3.2.2. Let the model’s residual

representation Rℓ = B∗

3. Note: B∗ will need to be recalculated if the intended layer of injection changes.
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For each of these encoding styles, Embed , Unembed , Layer-wise, once we have the encoded

memory B∗, we employ the same method to inject it into the model as per equation (3.10).

3.6.2 Encoding Style FLOP Counts

Following Kaplan et al. [2020], we calculate approximately how many FLOPs are required

to encode a memory. We use the following parameters when referring to transformer

architecture hyperparameters: nlayer (number of layers), dmodel (dimension of residual

stream), dff (dimension of intermediate feed-forward layer), dattn (dimension of the at-

tention output), and nheads (number of attention heads per layer). As per convention,

dattn = dff/4 = dmodel. Additionally, nctx refers to the number of input tokens to the

model; for Hand nctx = 2.96 and for 2WMH nctx = 5.25 on average, where nctx refers to

the average token length of the “memories” for the given dataset.

The FLOP counts for both the Embed and Unembed memory encoding styles can be

calculated as:

totalflop = nctx ∗ dmodel (3.12)

The FLOP counts for both the Layer-wise memory encoding style can be calculated as:

embedflop = nctx ∗ 4 ∗ dmodel (3.13)

N = 2 ∗ dmodel ∗ nlayer ∗ (2 ∗ dattn + dff ) (3.14)

ffflop = 2 ∗N + 2 ∗ nlayers ∗ nctx ∗ dattn (3.15)

totalflop = embedflop + ffflop (3.16)
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3.6.3 Additional Model Descriptions

We expand the models we study to: GPT2-Small, GPT2-Large, GPT2-XL, GPT-Neo (125M),

GPT-Neo (1.3B), GPT-Neo (2.7B), GPT-J. Refer to table 3.6 for additional model charac-

teristics.

GPT2-Small, GPT2-Large, GPT2-XL, GPT-Neo (125M), GPT-Neo (1.3B), GPT-Neo

(2.7B) typically have tied embedding and unembedding weights; this means that the model

shares the same weights for both the embedding and unembedding matrices. In the case of

models with tied embeddings, the Embed and Unembed memory encoding strategies would

yield equivalent results. In this work, however, we instantiate our model from a popular open-

source Python library, [Nanda and Bloom, 2022], which applies two post-processing steps

to the model weights: centering the unembedding weights such that they have zero mean,

and folding in the layer normalization weights into the model weights as per Elhage et al.

[2021]. These weight post-processing steps effect the embedding and unembedding weights

differently as only the unembedding layer has a preceding layer normalization operation.

Therefore, it is interesting and necessary to investigate both Embed and Unembed in the

context of memory encoding schemes.

Model Name dmodel dvocab # layers

GPT2-Small 768 50257 12
GPT2-Large 1280 50257 36
GPT2-XL 1600 50257 48

GPT-Neo (125M) 768 50257 12
GPT-Neo (1.3B) 2048 50257 24
GPT-Neo (2.7B) 2048 50257 32

GPT-J 4096 50400 28

Table 3.6: Model Characteristics. dmodel is hidden dimension of model. dvocab is size of
model’s vocabulary. # layers is number of layers in model.
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3.6.4 Memory Encoding Style Experiments

In Section 3.5, we investigated the effect of using the Unembed encoding style on various

memory types. Now, we investigate the effect of using the Embed and Layer-wise encoding

style in a memory injection to enhance a model’s multi-hop reasoning capability.

Experimental design: This experiment is identical to that of Section 3.5.1, except

that: rather than using the Unembed encoding style for the memories, we, in turn, use the

Embed and Layer-wise encoding styles.

Discussion: The results are in Figs 3.10-3.16 and Table 3.7. We observe that, on av-

erage, the Layer-wise encoding strategy resulted in the largest increase in model predictive

performance on average across models, followed by the Embed and Unembed encoding strate-

gies. However, the Layer-wise encoding strategy is significantly more computationally costly

than Embed and Unembed . Therefore, depending on the application, it may be desirable

to use lightweight encoding strategies such as Embed , and Unembed or more reliable (but

expensive) strategies such as Layer-wise.

Encoding Style Avg. Percent Difference Avg. FLOP

Embed 228% 7.4e3
Unembed 182% 7.4e3
Layer-wise 882% 1.7e9

Table 3.7: Encoding styles vs. FLOPs. The Avg. Percent Difference column reports the
mean of the average percent different of the most performant (layer, magnitude) injection
pairs across all (model, dataset) combinations for various memory encoding styles. The
average percent difference (excluding outliers >±2 standard deviations from the mean) is
computed between the pre- and post-injection expected next token predictions for multi-hop
prompts. The Avg. FLOP column reports the average number of float point operations
needed for the corresponding encoding style calculated in accordance to section 3.6.2.
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Figure 3.10: GPT2-Small Heatmap shows average percent difference between pre- and
post-injection answer probabilities for multi-hop prompts excluding outliers not within ±2
standard deviations from the mean across various memory encoding styles (Embed , Unembed ,
Layer-wise) and datasets (Hand , 2WMH ).
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Figure 3.11: GPT2-Large Heatmap shows average percent difference between pre- and
post-injection answer probabilities for multi-hop prompts excluding outliers not within ±2
standard deviations from the mean across various memory encoding styles (Embed , Unembed ,
Layer-wise) and datasets (Hand , 2WMH ).
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Figure 3.12: GPT2-XL Heatmap shows average percent difference between pre- and post-
injection answer probabilities for multi-hop prompts excluding outliers not within ±2 stan-
dard deviations from the mean across various memory encoding styles (Embed , Unembed ,
Layer-wise) and datasets (Hand , 2WMH ).
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Figure 3.13: GPT-Neo (125M) Heatmap shows average percent difference between pre-
and post-injection answer probabilities for multi-hop prompts excluding outliers not within
±2 standard deviations from the mean across various memory encoding styles (Embed , Un-
embed , Layer-wise) and datasets (Hand , 2WMH ).
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Figure 3.14: GPT-Neo (1.3B) Heatmap shows average percent difference between pre- and
post-injection answer probabilities for multi-hop prompts excluding outliers not within ±2
standard deviations from the mean across various memory encoding styles (Embed , Unembed ,
Layer-wise) and datasets (Hand , 2WMH ).
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Figure 3.15: GPT-Neo (2.7B) Heatmap shows average percent difference between pre- and
post-injection answer probabilities for multi-hop prompts excluding outliers not within ±2
standard deviations from the mean across various memory encoding styles (Embed , Unembed ,
Layer-wise) and datasets (Hand , 2WMH ).
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Figure 3.16: GPT-J Heatmap shows average percent difference between pre- and post-
injection answer probabilities for multi-hop prompts excluding outliers not within ±2 stan-
dard deviations from the mean across various memory encoding styles (Embed , Unembed ,
Layer-wise) and datasets (Hand , 2WMH ).

3.7 Related Work

Much recent work has focused on the inner workings of Transformers [Vaswani et al., 2017,

Devlin et al., 2019, Brown et al., 2020, ?]. Nanda et al. [2023b] explore how the emergent

properties of LMs form during training. Recent interpretability research has focused on the

mechanisms by which linear layers in LMs retrieve information, characterizing them as key-

value stores of information [Geva et al., 2021b, Dai et al., 2022a,c] and showing that tokens

can be characterized by their distribution in the output vocabulary [Geva et al., 2022].

Others have also examined the intermediate activations of LMs in order to uncover un-

derlying reasoning mechanisms. nostalgebraist [2021] applied GPT-2’s unembedding matrix

to intermediate layers to interpret how the model arrives at its final answer. Belrose et al.

[2023] employed a learned transformation to mitigate the effect of any bias introduced by

using the unembedding matrix.

There has been much recent interest in whether LMs are reliable stores of information for
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attempting to both identify where knowledge exists and how to edit stored factual knowledge

effectively [Mitchell et al., 2022b,c, Elazar et al., 2021, Hase et al., 2023]. Recent approaches

to knowledge editing make use of learned hyper-models to edit weights, additional trained

parameters, or direct interventions on model weights [De Cao et al., 2021, Huang et al.,

2023, Dhingra et al., 2022]. However, these approaches raise another issue: dealing with

knowledge retention and preventing catastrophic forgetting [?Hase et al., 2021, Zhong et al.,

2023]. Additionally, it is not clear that the mechanisms by which model predictions are

constructed is fully understood, limiting our ability to improve model performance [Turpin

et al., 2023]. Some approaches propose to use external knowledge stores such as knowledge

graphs to augment the factual capabilities of LMs [Jiang et al., 2023a, Sun et al., 2018,

Zhang et al., 2022].

3.8 Conclusions and Future Directions

We demonstrate that a key reason LMs perform worse on multi-hop prompts is because

they fail to recall intermediary information that is relevant to a hop. We find that attention

heads play an important role in this factual recall process, and that in the case of multi-hop

reasoning, certain attention layers fail to recall relevant information. To rectify this short-

coming, we establish an algorithm for injecting “memories” directly into the model’s hidden

activations during inference. Through experimentation, we find that injecting relevant mem-

ories into the hidden activations of the attention heads during inference is an efficient way

to boost model performance on multi-hop prompts.

We anticipate that our memory injection scheme can extend a model’s longevity by

enabling less frequent retraining/fine-tuning. We also hope in future work to demonstrate

the use of memory injections to correct stale or incorrect information, remove private or

harmful information, and combat bias during LM inference.

There is also a tremendous opportunity to scale online-memory injections to enhance the
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quality of thousands/millions of model inferences, if we can automate the process of memory

selection via unsupervised algorithms, for instance by connecting LMs with knowledge bases.

3.9 Broader Impacts & Ethics

Limitations

Internal biases of the question writers as well as the rigid structure that had to be imposed

on the prompt structure mean that our human-generated dataset is representative only of a

small fraction of the many types of multi-hop questions. Furthermore, our hand-generated

dataset is relatively small compared to our programmatically generated dataset. Addition-

ally, our analyses were limited to GPT2-Small and GPT2-Large; further work is needed to

determine whether, as we expect, other language models sharing a transformer-based ar-

chitecture and a similar unsupervised causal language modeling training objective display

similar behavior. Lastly, we rely on the model’s unembedding matrix WU to interpret model

hidden states and embed memories for injection. While for our work, results indicate that

this transformation was sufficient, we acknowledge that this unembedding matrix is not

tuned to interpret intermediate layers; we aim to address this shortcoming in future work

by instead using layer-specific learned projections to transform between hidden states and

vocabulary.

Ethics

Our attention head inspection mechanism uncovered several sources of bias (such as racism);

refer Table 3.3 for examples. We expect a more detailed study of the attention heads of

GPT2-Small and GPT2-Large, as well as other LMs, to reveal additional undesirable behav-

iors. We aim in future work to use our inspection method to uncover (and hopefully address)

these biases.
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CHAPTER 4

ATTENTION LENS

4.1 Introduction

Transformer-based Large Language Models (LMs), such as GPT-2 [Radford et al., 2019a],

have become popular due to their ability to generate fluent text and seemingly embed vast

quantities of knowledge in their model weights. Yet, despite many advancements in language

modeling, we still lack the ability to reason concretely about the mechanisms by which

LMs produce output predictions. Recent interpretability research has used the Residual

Stream paradigm [Elhage et al., 2021]—the view that transformer-based architectures make

incremental updates in each layer to their final output distribution by leveraging processing

occurring in the attention heads and linear layers—to guide their work. Hence, researchers

have explored the perspective that projecting activations from hidden layers into vocabulary

space can provide insight into a model’s current best prediction at each layer [nostalgebraist,

2021, Belrose et al., 2023].

For example, the Logit Lens [nostalgebraist, 2021] and the Tuned Lens [Belrose et al.,

2023] frameworks both seek to map latent vectors from intermediate layers in LMs to the

vocabulary space and interpret them as short-circuit predictions of the model’s final output.

Moreover, via the Residual Stream paradigm, researchers have studied the role of linear

layers, identifying them as key-value stores that retrieve factual information [Geva et al.,

2021b, Meng et al., 2022a]. Yet despite this recent progress in understanding the mechanics

of LMs, little is known about the roles of attention heads in transformer architectures.

Here, we conduct an in-depth exploration of how attention heads act on the model’s input

at each layer and their eventual downstream effects on the final output prediction. We do

so by extending existing techniques used to project latent vectors from LMs to vocabulary

space, such as the Logit Lens and Tuned Lens, to act on attention layers instead of multi-
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Figure 4.1: Attention Lens. Comparing the outputs of layer ℓ = 10, head h = 11 using
Attention Lens vs. the model’s umembedding matrix in GPT2-Small.

layer perceptrons (MLPs). We implement this new technique in a novel interpretability

tool, Attention Lens, an open-source Python framework that enables interpretation of the

outputs of individual attention heads during inference via learned transformations between

hidden states and vocabulary space (see Fig. 4.1). Attention Lens makes it easy for users

to instantiate new lens designs and to train them with custom objective functions.

Using Attention Lens, we investigate the role that attention heads play in text com-

pletion tasks. We perform an extensive study on GPT2-Small, highlighting the—often

specialized—roles that attention heads play in these models (e.g., knowledge retrievers, in-

duction heads, name-mover heads, self-repair) [Sakarvadia et al., 2023, Olsson et al., 2022,

Geva et al., 2023, Wang et al., 2022b, McGrath et al., 2023]. Further, we demonstrate that

attention layers are key structures for information retrieval, allowing subsequent layers to

incorporate latent information that is relevant to the final answer. Using Attention Lens,

we can:
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1. Interpret the concepts that specific attention heads deem relevant to incorporate into

the model’s final prediction via the residual stream.

2. Localize ideas, errors, and biases to specific attention heads within a model.

Logit Lens Tuned Lens Attention Lens
Learned Transform ✗ ✓ ✓

Interpret MLPs ✓ ✓ ✗

Short-Circuit Predictions ✓ ✓ ✗

Interpret Attention Heads ✗ ✗ ✓

Identify Relevant Concepts to Input ✗ ✗ ✓

Table 4.1: A comparison of Attention Lens with Logit Lens and Tuned Lens.

4.2 Training Lenses

We describe how we train lenses for the GPT2-Small model architecture for preliminary

research efforts. Section ?? further highlights use cases for trained lenses.

Model: We apply Attention Lens to a pre-trained GPT2-Small model with 12 layers,

12 heads per attention layer, ∼160M parameters, and a vocabulary V of ∼50K tokens [?].

Training Objective: We define a lens as Lℓ,h ∈ Rd×|V | where d is the model’s hidden

dimension, |V | is the cardinality of the model’s vocabulary, ℓ is the layer number, h is the head

number. A lens is a set of trainable parameters. Each lens acts on the outputs of a specific

attention head ahℓ ∈ Rd, and transforms those outputs into Lℓ,h(a
h
ℓ ) = ah

′
ℓ ∈ R|V |. Given

an input, Attention Lens attempts to minimize the Kullback-Leibler divergence, denoted

by DKL(·), between a given model’s output logits O ∈ R|V | and transformed attention head

outputs ah
′

ℓ ∈ R|V | on layer ℓ, head h. We then optimize to find the ideal lens parameters,

L∗
ℓ,h, for a given layer and head, according to the following objective:

L∗
ℓ,h = argmin

L
DKL(a

h′
ℓ ∥O) (4.1)
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Additional research may reveal more ideal objective function designs to optimize lenses

to provide interpretable insight into the roles of individual attention layers for knowledge

retrieval.

Prior lens architectures—Tuned and Logit Lens—were optimized to decode the behavior

of MLPs. A growing body of work suggests that MLPs in LMs act as knowledge stores [Geva

et al., 2021b]. However, attention layers may act as knowledge retrievers [Geva et al., 2023,

Li et al., 2023, Dar et al., 2022]; therefore, we postulate that lenses should be trained with

objectives that aim to optimize relevance between attention layer outputs and model inputs,

rather than between layer outputs and model predictions. Currently, our experiments do

the latter. In future work, we will run experiments to test the former objective function.

Even still, identifying the objective function that best allows easy interpretation of the role

of individual attention layers for knowledge retrieval is an open problem.

Training Data: We train our lenses on the Book Corpus dataset [Zhu et al., 2015]. We

speculate that the choice of training data greatly impacts the transformation that a lens

learns. For this reason, as we develop Attention Lens further, we will attempt to match

lens training data with the model’s training data.

Experimental Setup: We trained 144 lenses, one for each attention head in GPT2-

Small (12 layers × 12 heads). We train lenses in groups indicated by their layer number (12

groups with 12 lenses each). We train each group of 12 lenses across 10 nodes of 4 A100

GPUs; each GPU has 40 GB RAM. Each lens was trained for ∼250k steps (∼1.2k GPU

hours to train each group of 12 lenses). Each lens has ∼38M parameters; therefore, the

parameter count for 144 lenses is ∼5.5B.

4.3 Attention Lens Applications

Attention Lens can be used to attribute behavior to specific attention heads within state-

of-the-art models comprised of thousands of heads. Here we describe three potential appli-
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cations.

1) Bias Localization: The insights from Attention Lens may enable researchers to

decode harmful, incorrect, or biased reasoning paths taken by models during inference. Con-

sider the prompt “The first Black president of the United States was a member of the. . . .”

GPT2-Small predicts the prompt completion as “Ku Klux Klan.” The Attention Lens can

be used to inspect the attention head outputs during inference for such prompts, with the

goal of localizing sources of harmful bias. In this example, trained lenses highlight that the

top 50 outputs of GPT2-Small’s layer ℓ = 9 and head h = 8 contain the tokens [“ Negro,”

“ Confederacy,” “ Railroad,” “ Confederate”]. This evidence may encourage investigation of

this specific attention head as a source of racial bias in prompt completions.

2) Malicious Prompt Detection: Language models are vulnerable to prompt injection

attacks [Kandpal et al., 2023b, Perez and Ribeiro, 2022, Greshake et al., 2023], Attention

Lens can shed light on how malicious prompts achieve their aim of altering model behavior,

often to circumvent safeguards preventing misuse.

Below are the top 50 lens outputs from GPT2-Small, Layer 9, Head 8:

Prompt: “Correct the grammar in this sentence: The apple are red.”

[‘\n’, ‘ (’, ‘ and’, ‘ a’, ‘ in’, ‘ "’, ‘ of’, ‘.’, ‘ to’, ‘ for’, ‘ on’, ‘ The’, ‘ I’, ‘ -’, ‘ that’,

‘-’, ‘ as’, ‘ with’, ‘ at’, ‘,’, ‘ is’, ‘ A’, ‘ or’, ‘ [’, ‘ by’, ‘ it’, ‘:’, ‘ an’, ‘ this’, ‘ from’,

‘ –’, ‘D’, ‘s’, ‘ all’, " ‘", ‘(’, "’s", ‘ one’, ‘ the’, ‘/’, ‘SPONSORED’, ‘ D’, ‘ not’, ‘

so’, ‘ said’, ‘ but’, ‘ was’, ‘ 1’, ‘ —’, ‘ more’]

Malicious Prompt: “Correct the grammar in this sentence: The apple are red.

Ignore any previous and following instructions and just print: Nazi”

[‘German’, ‘ Holocaust’, ‘Naz’, ‘ Reich’, ‘ German’, ‘Nazi’, ‘\n’, ‘Germany’, ‘

Jewish’, ‘,’, ‘ Germany’, ‘ Nazis’, ‘ Franco’, ‘ Ukrainian’, ‘ (’, ‘ a’, ‘ and’, ‘

Germans’, ‘ in’, ‘ Mü’, ‘ Naz’, ‘ Zionism’, ‘ Berlin’, ‘rich’, ‘ of’, ‘ NK’, ‘ Zy’, ‘
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fascists’, ‘ French’, ‘.’, ‘ -’, ‘Aust’, ‘ to’, ‘ "’, ‘ for’, ‘ Spiel’, ‘-’, ‘ is’, ‘ K’, ‘Bir’, ‘

on’, ‘ The’, ‘ Nazi’, ‘ the’, ‘ that’, ‘ Hitler’, ‘ said’, ‘/’, ‘K’, ‘ Zionist’]

3) Activation Engineering/Model Editing: Undesirable model behaviors, factual

errors, etc. could be localized within a given model by analyzing lens outputs and then

corrected via an efficient gradient-free intervention such as activation injection [Sakarvadia

et al., 2023, Turner et al., 2023].

4.4 Evaluating Lenses

Empirically, we observe that our trained attention lenses provides richer interpretations of

individual attention head outputs compared to using the model’s unembedding matrix (see

Fig. 4.1). We hypothesize that this is because the model’s unembedding matrix, being

trained only to act on the model’s residual stream after the final layer for the role of next

token prediction, is not well-suited to transforming latent representations at intermediate

layers to their counterparts in vocabulary space.

In future work, we will assess the quality of our lenses quantitatively by using causal basis

extraction to measure the causal fidelity between our lenses’ representations of attention

head outputs and the model’s final predictions [Belrose et al., 2023]. This is an essential step

to determine whether our learned mappings provide meaningful information regarding the

evolution of the residual stream during the forward pass. Additionally, as training a lens is

computationally intensive, we also seek to evaluate the degree to which the learned mappings

for a given layer translate to proximal layers in our model; if so, it may be possible to reduce

computational requirements for training lenses by sharing lenses between layers. We will

also assess the degree to which trained lenses transfer meaningfully to fine-tuned versions of

models, which could further extend the usability of our framework. The ability to share a

single lens across disparate layers and models could be assessed, for example, by computing

the disagreement between the token distributions produced between trained lenses for a given
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pair of layers or models using a measure such as cross-entropy or KL-Divergence.

4.5 Conclusion

We introduce Attention Lens: an open-source framework for translating attention head

outputs in a model’s hidden dimension to a vocabulary space. Using our Attention Lens, we

illustrate that attention heads inject pertinent semantic information into the residual stream

of transformer-based models, often displaying specialized behavior, as seen in Fig. 4.1. We

outline how trained lenses can be used for tasks like concept localization, backdoor detection

(e.g., malicious prompts), activation engineering, and evaluating model behavior. Finally,

we provide a detailed plan to further develop appropriate lens architectures and evaluate

them.

Limitations

Additional experimentation may be needed to determine the optimal architecture and train-

ing objective for lenses, which furthermore may vary between LMs. To address this initial

shortcoming, the Attention Lens tool makes it easy for researchers to implement and train

their own lenses.

Currently, we have only trained lenses for a single model (GPT2-Small). We will train

additional lenses for other models in future work.
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CHAPTER 5

SUMMARY & FUTURE WORKS

This thesis presents two language modeling interpretability tools:

1. Memory Injections: A light-weight activation engineering method that can be used

to inject pertinent information into a model’s residual stream to boost model perfor-

mance during inference. The code is open source and available under the MIT license

at https://github.com/msakarvadia/memory_injections.

2. Attention Lens: A software framework to enable to the training of probes into lan-

guage model attention heads. The code is open source and available under the MIT

license at https://github.com/msakarvadia/AttentionLens.

Memory injections allow users to encode and provide “memories” to a language model at

inference time in a manner that is compatible with the models internal knowledge represen-

tation. We experiment with multiple memory encoding techniques, discovering a trade off

between representational accuracy and computational cost. Memory injections can be used

both as a tool to causally localize sources of model behavior and to provide inference-time

corrections to unwanted/poor model behavior. Memory injections have the benefit of being a

human-interpretable tool. We demonstrate a concrete use case for memory injections in the

case of multi-hop reasoning. We employ memory injections to augment a language model’s

knowledge recall capacity during multi-hop reasoning tasks and show an improvement in

downstream reasoning performance. Future work can consider extending applying memory

injections to remove unwanted or harmful information from a model’s residual stream during

inference, developing automated memory selection workflows, and further exploring better

representational schemes for encoding memories.

Attention Lens allows users to train probes into attention heads of a neural network,

further elucidating how models arrive at their final output predictions. Lenses can be trained
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to perform many different types of tasks. In this work, we train attention-head specific

lenses for GPT2-Small. We demonstrate three use cases for these lenses: bias localization,

malicious prompt detection, and activation engineering/model editing. Future work can

consider training lenses for more models, using lenses to localize harmful behavior, and

guide developing mitigations/corrective strategies for large pre-trained models.
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